前文分别介绍了滴滴自研的ES强一致性多活是如何实现的、以及如何提升ES的性能潜力。由于滴滴ES日志场景每天写入量在5PB-10PB量级,写入压力和业务成本压力大,为了提升ES的写入性能,我们让ES支持ZSTD压缩算法,本篇文章详细展开滴滴在落地ZSTD压缩算法上的思考和实践。
背景
ES通过索引(Index)对外提供数据检索能力,索引是用于组织和存储数据的逻辑单元。每个索引由若干个分片(shard)组成,每个分片就是一个Lucene索引,可以在不同的节点上进行分布式存储和并行处理,提高性能和可伸缩性。每个分片由一组段文件(segment)组成,段是分片中更小的存储和搜索单元,是一组物理文件,包含了检索需要的倒排索引(词项和文档ID的映射关系)和文档存储(字段值和其他元数据),如下图:
Lucene作为ES的底层索引引擎,提供了灵活的数据检索能力,同时也导致CPU、存储占用较为严重。为实现降本增效,23年上半年,ES团队开启了Lucene压缩编码优化专项,通过改进存储层压缩算法,从而降低单位Document所占用的资源。本文概述了ES的底层索引文件,并介绍了Lucene存储压缩编码的优化。
Lucene索引文件介绍
ES的压缩编码优化专项涉及到Lucene底层的文件存储,Lucene索引由一组Segment构成,每个Segment包含了一系列文件,重点文件类型如下图: